
VF DU + 32 SEPT/OCT 13921

DOWN UNDER CLUB

“<< Rator = | o - Treasurer —

- Harry Huggins = = -— Ron Allen-

12 Thomas Str. = - o o +2 Orlando str. --

Mitcham. 3132. loge ae ee Hampton. 3186..-. -

03-973 1408 - | co QS H98 e a >

FIRSTLY, OUR CONGRATULATIONS TO THE “EDITOR OF OUR
CONTEMPORARY NEWSLETTER, JOE LEON. HE IS A GRANDFATHER. A
GRANDSON.

I hope you all enjoyed our birthday issue. Now I have to
get this issue out, and then start on our Xmas issue. Wait for

it. Tt will be: a special:

I also hope to see a lot more of our members send in

more contributions. If- it was'nt for Bob Kitch and David

Wood, this issue would be about 4 pages. |

It's your club, so let us see your name at the head of a
column. Even if it's only a letter to say "why: dom t=: you; do
this?" :

: One member commented that another was sweeping the High
Scores table clean. On checking I found that they have 7 high
scores and he had 15. Who is kidding who?.

There are still a lot of scoring games not in that high
list. Three have been added this issue, but there are many
more. A score of 5 could get you in the table. Why not try it? ‘
Merkfruit Lodge has a scoring system, so has Chess. Also Ace of wy
Aces; Armada, and many more. I don't mind filling the whole

page with scores.

What I would like is some small programs sent in. It
does'nt matter how simple. I often have a half page to fill
and. I have to write some nonsense to save having it blank.
Some of you youngsters (70 plus) could fill that in nicely.

Also some more comments/suggestions for the Graphics

Competition please. |

And for local members, remember that our meetings are the
first Sunday of each month, including the 5th of January, 1992.
Also on the 13th October there is a buy-sell-swap on at the Box
Hill Town Hall. We are aiming to have a stand there. If you get
there look us up. You may use it if you have any gear you want

to sell. No charge.

ASSEMBLY LANGUAG
— A Coward's Introduction.

by Bob Kitch

Assembly Language programming can accomplish miracles, but it is made to seem almost

as mysterious as Babylonian hieroglyphics ! Most users are fairly well versed in

Basic programming but do not often venture into the realms of Assembly Language.

This is a pity, as Assembler can achieve things that Basic has never dreamed of.

One of the nice things about Basic is that you can see the results straight away.

Type in PRINT"HELLO", press <RETURN>, and the VZ displays "HELLO" on the screen.

This is great encouragement to go on from. Assembler, on the other hand, has always

been presented as a massive task, requiring the mastering of strange registers,

indirect addressing and other things that boggle the mind of a Basic programmer. If

only you could do something simple with Assembler that would show results right

away.

This article is about starting off slowly with Assembler — and achieving some nice

small things wih it. It also builds upon my FAST BASIC theme and some powerful

applications have been presented in that hybrid language. Some of the programs

written and presented in user group magazines include, REAL TIME CLOCK, SCREEN

PRESERVER, LIVENUP and TONE GENERATOR. We will develop some FAST BASIC listings and

gain some insight into Z80 Assembly Language if you want to.

1. DOING IT FROM BASIC.

Before we start programming, it is necessary to pose a problem! Let's do something

in hi-res graphics (MODE(1)) because this is a little challenging. A commonly

required problem is to initialize the hi-res screen in one of the four colours that

it is capable of displaying. Normally from Basic, the screen comes up in the default

colours of green or buff, depending upon the background value (B= 0 or 1) that is

set by the COLOR,B command. Some applications look better if the hi-res screen is

yellow/cyan, blue/magenta or red/orange when initialized. The CLS command cannot

set-up the screen in these alternate colours. We will first of all write a program

using standard Basic commands to achieve a blue hi-res screen.

Listing 1 is called SNAIL GRAPHICS (for obvious reasons). Enter the program and run

it. All of the commands should be readily understandable. If they are not, then you

are probably not yet sufficiently experienced to proceed to the next step.

SNAIL GRAPHICS Version 1.1 uses a double nested loop and the SET command to fill the

hi-res screen. The colour of the screen can be altered by changing the foreground

colour in line #130. The two SOUND commands are used so that the time taken to fill

the screen can be measured with a stop watch. Isn't it painful! It takes almost one

minute to do it. This is much too slow for such a simple exercise.

Observe that the use of the SET command requires that all screen pixels, in the

range of O to 63 and O to 127 in the vertical and horizontal directions

respectively, be SET. The colour of the pixel is determined in the COLOR command. No

knowledge of the memory locations of the screen (video RAM), or the values to which

the memory locations are set, to achieve the colour required by the programmer. The

2

penalty for this simple approach is time.

Let's now investigate how we can speed-up this screen fill problem.

2. STILL IN BASIC.

Take a look at. listing 2. To understand SNAIL GRAPHICS Version 2.3 you must have
worked with graphics and progressed to PEEKs and POKEs into the video RAM area.
Notice that only a single nested loop is required in this version. Also the POKE to
the video area in line #210 actually sets four pixels rather than one. The SOUND
commands allow timing of the screen fill and a value of around 8.3 seconds should be
obtained. This is obviously a pretty souped up version using the Basic language.
Some other small changes to the program could get the timing down to about 8.0
seconds -— a huge improvement over Version 1.1. But we are really looking for a near
instantaneous method, so let's progress to Assembler.

3. THE VISIBLE Z80

I introduce a technique here that I have not seen tried anywhere else, and that is
to examine Z80 Assembler as if it resembled Basic. This should make the
understanding of Assembler appear as a simpler and more familiar step for
programmers. The method was introduced in my program called LOGIC OPERATIONS that
has been previously published. In that program Boolean Logic Operators and the Flag
Register of the 280 were simulated. In the next listing I use Basic to simulate the
powerful Z80 Block Move instruction. |

Before introducing the third listing, I need to diverge to discussing Assembly
Language. In all texts and articles introducing Z80 Assembler, the Block Move is
introduced as one of the simpler opcodes to comprehend. I agree with this, and it is
why I chose to use a screen fill as the programming example in this introduction. I
will endeavour to explain the Block Move instruction in plain English so that it can
be comprehended. (The Block Move instruction has been described in my hi- and lo-
res screen preserver article.)

The Z80 Block Move takes a number of forms but the one we will use has the mnemonic
IDIR. What does this gobbly-gook mean? Firstly, LD means LoaD; this implies a
transfer of a VALUE from a SOURCE location to a DESTINATION location. Secondly, the
I means Increment or Increase by one; implying that a progressive transfer, or
filling, of the DESTINATION with the VALUE is to occur. And finally, the R means
Repeat for a certain number of times, or COUNT. Does this look as though it is
useful to solving our screen fill problem? Let's think a little further. (If you
reflect upon Listings 1 and 2, you will see that these four parameters are also
required by Basic.)

We certainly need to fill a well-defined area of memory. The video RAM for the
hi-res screen is 800H (2048D) bytes long. This suggests COUNT or SIZE. The video RAM
commences at address 7000H (28672D) and ends at 77FFH (30719D). Note that this is
800H or 2048D bytes long. (You may need to think about that one!) The starting
address of the screen suggests a DESTINATION for the commencement of the Block Fill.
The actual VALUE to be placed in video RAM is to be supplied by the user as this
determines the colour of the screen — recall listing 2. The actual location of the
VALUE can be regarded as the SOURCE for the Block Fill. By Repeatedly LoaDing the
SOURCE VALUE to the DESTINATION for a certain COUNT, and Incrementing the

DESTINATION, we should be able to fill the video RAM with a particular VALUE. O.K.,

so the LDIR opcode appears as if it will do the job for us.

With that bit of background, you can now examine listing 3. This is a Basic program
written for the "VISIBLE Z80". The Basic program simulates what an Assembler program
could look like that does a screen fill. The use of variable names are especial ly
chosen to correspond with the "mysterious" register names on the Z80.

By way of further background, the Zilog (the manufacturers of the Z80) specification
for the LDIR instruction is as follows —
a. the HL register points to the SOURCE of the LoaD.
b. the DE register points to the DESTINATION of the LoaD.
c. the BC register contains the COUNT or number of times the LoaD is to take place.
d. the A register is the transfer point between the SOURCE (HL) to DESTINATION (DE)
locations.
e. after each transfer, the HL and DE registers are Incremented and the BC (COUNTER
) register is decremented.
f. the progressive LoaDing is Repeated until the BC register is decremented to zero
— in which case the instruction is terminated.

Conditions a. to c. are the initialization for the LDIR instruction. The actual
execution of the instruction involves conditions d. to f. The way in which Zilog
express all of this is a little cryptic but for those of you interested it is as
follows —
(DE)<— (HL), DEX—DE+1, HI<-HL+1, BC<-BC-1, REPEAT until BC=0.
I trust that you can figure some correspondence between this concise description and
my "word picture” provided above.

In lines 200 to 460, the Basic program with the corresponding psuedo-assembler is
given. Try to follow the relationship between the two languages. Reading and
understanding other programmers' code is a very useful form of learning. I mentioned
that the Assembler LDIR instruction is quite powerful, it takes 4 Basic commands to
execute it! This is unusual, as normally one Assembler instruction will translate to
one Basic command. A full discussion of the Assembler routine is given in the next
section. |

The algorithm used in this example is simple to understand using the characteristics
of the LDIR instruction. There are many other routines that would achieve the same
job. It is important to realize that there is never merely one way to achieve a
particular end. The programmer generally calls upon his experience with familiar
commands, and these may be the quickest and shortest way of achieving the object.
But there is never only one correct solution to coding a particular problem. Another
algorithm that will achieve a screen fill is as follows-

LD HL, 7000H
LD BC, 800H

LP LD (HL) ,170D
INC HL
DEC BC
LD A,C
OR B
JR NZ, LP
RET

So, with this background, listing 3 should be readily comprehensible. The timing 1s
none to startling, but it is a demo program!

4. THE SAME THING IN ASSEMBLER.

The Assembler Code for this exercise would look as follows —

LD A, 170D
LD HL, 7000H
LD DE, 7001H
LD BC, 7FFH
LD (HL), A
LDIR
RET

How was this program and list of instructions put together? A process called HAND
ASSEMBLY was used. (Hand assembly is used for short programs — longer ones are
written using the EDASM program.)

To carry out hand assembly, the following pieces of information are required —
-a numeric list of Z80 instructions,

-an alphabetic list of Z80 instructions and,
—a table to convert decimal (0 — 255) numbers to hexadecimal (OOH — OFFH) numbers. :

Should any user require suitable copies of the two Z80 code lists, they can send me
$200 and I will forward copies by return mail. It is an interesting exercise to
write a Basic program that will provide a tabulation of dec-—hex conversion that is
suitable for hand assembly. |

Let's examine how this algorithm works. You may wish to refer to listing 3 to gain a
complete understanding. The Block Fill is really best thought of as a "ripple-fill".
The source is always the byte preceding the destination and as the HL and DE
registers are incremented, a destructive overwrite of the previous information in
the block occurs. Note that the value, contained in the A register, must be loaded
into the first memory location of the fill to initialize the process. This
initialization is most often forgotten by beginners. Another common mistake is to
set the count in BC, one too high because the first byte is initialized "outside" of
the LDIR instruction. I trust that users can follow the logic of this algorithm — if
not, go back to listing 3 in Basic.

The next problem in hand assembly is to find the corresponding decimal values to
POKE into memory as Machine Language. By using the Z80 instruction lists, mentioned
previously, a hex equivalent of the Assembler can be derived. These are converted to
decimal values using a conversion table (or a calculator) and entered into DATA
statements. It is possible to put hex values into DATA statements and use a hex
loader routine to poke the values into the designated area of memory.

The only remaining problem is where to load the M/L? This has been discussed in a
previous article on FAST BASIC. For listing 4, I have chosen to simply POKE it into
the Free Space List. (This is a "lazy" way, but I will fix it up in the next
listing!) The Usr Vector is set to the start of the M/L. Save the program to
disk/tape before running the Basic program. Assembler is totally unforgiving if any
errors are made and you run the risk of having to re-enter the entire program. (be
warned!)

Listing 4 achieves the hi-res screen fill in about 0.1 secs. This is what we were
looking for and it is achieved with 15 bytes of M/L. I trust that this has given
some new insight into Assembly Language programming and taken some of the mystery
from it. This article also provides a painless introduction to Assembly Language

programming.

5. MULTIPLE HI € LO RES SCREENS.

I have provided a bonus for those who have persevered thus far! Listing 3 is the

logical culmination of the exercise we set about to achieve at the start of this

article. It uses a slightly modified form of the routine described above. It permits

the value selected to fill the screen to be passed, from the Basic program, to the

USR() routine. The technique used has been described in my FAST BASIC article. The
integer value contained in the brackets of the USR statement is placed into the

Communication Area at address 7921/2H and can be picked up by the M/L program.

There are three further features of this program that I have not yet discussed and

are worthwhile to incorporate into Basic-M/L modules.

i. When entering M/L from DATA statements, the values must be exact. Otherwise, the

M/L routine is wrong and a computer malfunction will occur. (The same thing happens

if the Usr Pointers are not set correctly.) As a check that the DATA statements have

been entered correctly from a program listing, it is useful to set up a "checksum"

facility. This simply keeps a running total of the data values as they are loaded.

Before executing the program, the checksum is compared to a correct value and

execution prevented if the two values do not agree. In listing 5, the variable Co%

is used in lines 210 to 240. It is compared with the correct value in line 250 and

if not correct passes to an error handling routine in line 1000. If the error

message is seen, then the DATA statements in lines 410 to 470 need to be checked.

ii. How many program listings have you read that simply list the DATA values to be

POKEd into memory with no explanation? Any wonder that beginners have difficulties

in understanding! The method of setting out the M/L in "psuedo-assembler" form is to

be strongly recommended.

iii. The program places the 16 bytes of M/L into a reserved area of memory created

by lowering the Top-Of-Memory. If at any time, you feel as if the M/L routine is not

functioning properly, then it is a simple matter to loada disassembler program and

decode the TOM area. This ensures that it is correctly loaded, that your decimal

values carry out the action that you think they do, and that the area is not being

overwritten by some other processes. This is a very powerful form of debugging when

developing M/L routines.
—

5 LISTING 1 | 5
10 '***SNATL GRAPHICS DEMO*** 10 '**e*SNAIL GRAPHICS ron i

E ii 20 ne ` HI-RES ae

40 1 eee R.B.K. 2215/86 KER | 40 ! Je R B K 22/5/86 HEHE

50 "eee EXECUTION TIME 57.6 SECS. | | caer EXECUTT er o eS. * 50 EXECUTION TIME 8.3 SECS.

100 ‘SET TO HI-RES.
120 MODE (1) 120 MODE (1)
130 COLOR 3,0 :'RED ON GREEN F |
140 SOUND 10,1 130 COLOR ,O :'GREEN BACKGROUND,

140 VA=170: SOUND 10,1: RED.
200 FOR [%=286/2 TO 30/19
210 POKE 1%,VZ

200 FOR V=0 TO 63
210 FOR H=0 TO 127

AA A A e NN eG EL a e

220 SET (H, V) 220 NEXT 1%
230 NEXT H SOUND 10,”
240 NEXT V ns pes 260 FOR I=0 TO 2000:NEXT I
250 SOUND 10,1 270 STOP |
260 FOR 1=0 TO 2000:NEXT I 280 END
270 STOP |
280 END 6

dl

LISTING 3
1 O 1 3e 3E HEHE HEHE TE HE THe HE E HE HE Me He Te He HE HE IE HE He NE E

20 '*** VISIBLE 7-80 ***
30 '*** DEMO OF LDIR vee
AQ eee ASSEMBLER TUTOR ***
50 “ee BY R.B.K 7/3/91 te
60 CA MEA ENE RENEE RENO

70 '*ee EXECUTION TIME 70 SECS.
80 I

90 '***DEMONSTRATION OF SCREEN FILL IN BASIC T
HAT EMULATES
100 '***THE LDIR INSTRUCTION OF THE Z80.
110 ***VARTABLES USED RESEMBLE THOSE OF THE Z
80 REGISTER SET.
120 '
150 '
140 MODE (1) : HI-RES SCREEN,
150 COLOR ,0 : GREEN BACKGROUN
D.
160 SOUND 10,1 ¿TIMING MARK.
170 '
180 '***ASSEMBLER SIMULATION STARTS HERE.
190 '***INITIALTZE ALL OF THE REGISTERS USED.
200 Añ=170 : "LD A, 170 VALUE.
210 HLZ=28072 : "LD HL, 7000H SOURCE |

220 DEZ=28075 : 'LD DE, 700tH DESTIN
ATION.
230 BCZ=204/7 ¿"LD BC,O7FFH COUNT.
280 '
290 '***PUT FIRST VALUE INTO START OF VIDEO RA
M.
300 POKE HLZ,AZ :'LD(HL),A
380 |

390 '***CARRY OUT DESTRUCTIVE BLOCK MOVE.
400 ' : 'LDIR
410 POKE DEZ,PEEK (HLZ) F (DE) <- (HL)
420 HLZ=HLZ+1 E HL <- HL+1
430 DEZ=DE%+1 a DE <- DE+1
440 BCZ=BCZ-1 BC <- BC-1

em iy er a ee ca

450 IF BC%<>0 THEN GOTO 410: TEST FOR END'
460 ' © RET

470 '

490 '***FINISH OFF.

500 SOUND 10,1 + "TIMING MARK.

510 FOR I=0 TO 2000:NEXT I

520 STOP

600 END

LISTING 4
7 1 EEEE HEIENE AE IERE NE IEE IE AEAEE IE AEAEE HE IE IE AE ENE EIE IE IPEE NENE AE AE

3 '***NEAR-LIGHT-SPEED GRAPHICS DEMO***
aed HI-RES saad
sii VERSION 1.3 ás
Gm R.B.K. 22/5/86 eines
7 1 HEHEHE HE HE IE NE REFE HEHEHE NE IE HE IE NE HEHE HE NENE HEHE HEHE HEHE HE HEHE HE SHE HEHE HE

8 '* EXECUTION TIME <0.5 SECS.
9 '"***LOAD MACHINE CODE INTO FSL ABOVE BASIC V
LT, |
10 FOR I=-28687 TO -28673
20. READ A:POKE I,A
30 NEXT I |
39 '
40 DATA 62,170 : LD A,170 (+170D BLU
E)
41 DATA 33,0,112 ¿"LD HL,7000H = (#28672D S
TART VIDEO RAM) |
42 DATA 17,1,112 : "LD DE,7O001H = (#28673D N
EXT)
43 DATA 1,255,7 ¿"LD BC,O/FFH (R2047D S
IZE OF VIDEO RAM)
44 DATA 119 ¿LD (HL),A
45 DATA 257,176 : LDIR (BLOCK LOA
D COMMAND)
46 DATA 201 : RET
47 ">
49 INITIALIZE USRO TO ADDRESS SFFIH OR #-
2868/D IN FSL.
50 POKE 30862, 241 :POKE 30863, 143:
58 '
59 '***PUT UP BLUE SCREEN.
60 MODE (1) :COLOR,O
70 SOUND 10,1
80 X=USR (0)
90 SOUND 10,1
i
99 '***DELAY TO VIEW SCREEN.
100 FOR I=0 TO 2000:NEXT I
110 END

first loop is the forty tracks, the second the sixteen sectors,

the third the five sections that make up the sectors and finally

the repitition of values in these sections.

The five sections are composed as follows. The first gap

comprises seven bytes of 80H followed by one byte of 0. The

identification address mark, also called the IDAM is made up of

seven bytes. FEH, E7H, 18H. C3H, the track number, the sector

number and a checksum which is calculated from the sum of all the

other numbers in the IDAM. If this is not what it should be

during a LOAD or SAVE you usually get the dreaded ' SECTOR NOT

FOUND' error or the equally bad 'CHECKSUM ERROR'. The second gap

‘consists of five bytes of 80H, and one byte each of 0, C3H, 18H,

E7H and FEH. Next is the data field, where your programs go. It

is created by simply one hundred and twenty eight zeros. Finally

another checksum comprising two bytes is calculated.

Within each of the above mentioned sections of dissassembly

listing, not a lot goes on. The timing, which is very critical,

is calculated by the actual hardware. All the software (DOS) does

is to load the data bit froma list and then send it to the

drive. The actual data is recorded using Frequency Modulation

(FM). We want to know how this affects the data. Each BIT of data

consists of two CELLs on the disk. There is a CLOCK BIT which is

one MICRO SECOND long. A micro second is one millionth of a

second and is represented by uS. Following this there is an

eleven uS gap until the actual bit of our information. If this

bit does not exist then it is assumed to be zero. To check this

there is a 32.2 uS gap from the start of one clock bit to the

start of another clock bit. DUE to the simplicity of FM recording

in the VZ drive, The rotation of the disk is slowed from the

industry standard of 300 RPM to 80 RPM. This also allows a

reduction in components and therfore cost. Just compare the

number: of ICs in an IBM drive to the six or seven in the VZ

drive.
After all that we return to the dissassembly listing to show

that address 4CF1-4CF5 steps the head in once to lay down another

track. When forty of these have been done the head is once more

stepped out forty times (4D03-4D07) and the verification occurs.

The track and sector (0,0) are loaded into the track / sector

vectors anda search for the IDAM begins (4D10-4D16). If this is

not found then we are returned to BASIC with an ‘I/O ERROR’. If

not then the next is searched for, and so on until all are found.

I have only ever had one disk fail during initialisation and this

was due to a scratch on the under side of the disk. (Your data 1s

recorded on the opposite of the disk to the label). This scratch

was due to the disks previous use in an APPLE disk drive. Anyway,

if the disk is okay then the next address after the INIT command

was issued is loaded back into the program pointer, the power to

the drive turned off and we jump back to BASIC. (4D40-4D44).

Hopefully you are not all confused and now realise how much

work is done when you press four keys. I-N-I-T-<RETURN>.

HOW THE YZ INITIALIZES A DISEK

By BEN HOBSON

some time ago Harry asked me to write an article on how the
VZ initializes a disk. After a bit of hacking and careful study
of dissasembly listings (about 13 pages) her it is. Before we
start a few things have to be cleared up. This is not an article
Which says it writes O's on the disk. This is an article which
explains how the particles are arranged on the disk. While I'm at
it, I'll also define a few terms. STEP IN refers to the head
moving in one track towards the centre of the disk. STEP OUT is
the exact opposite. A disk as you may know is composed of TRACKS
and SECTORS. A track is rather like an onion ring. The VZ has 40
of these tracks, one inside each other. The outermost track is
called track O and the innermost is track 39. In each track there
are 16 sectors. A sector is similar to a sector of a circle in
mathematics. In mathematics, the sector is a wedge of the circle
from the centre to the edge. In computing the sector is similar
but 19 a section of the mathematical sector one track wide. Logic
tells us they would be numbered 0 to 15 in a clockwise direction
(the way the disk spins). In practise this is not so. The sectors
are what is called INTERLEAVED. Interleaving means the next
numerical sector is not directly next, but a number of physical
sectors away. The reason for this is that computers are generally
not fast enough to read the data in the sector (128 bytes in the
VZ) and process it. By the time the data has been processed,
hopefully the next sector is under the head. If the sectors were
sequential the disk would have to rotate once to get the next
sector. In the VZ a two sector interleave is used. This means
between each numerical sector there is two physical sectors. The
order is 0, 11, 6, 1, 12, 7, 2, 13, 8, 3, 14, 9, 4, 15, 10, 5. In
the VZ's case this is a little too much. That is why people like
Dave Mitchell have written patches for DOS to create a one sector
interleave. This considerably speeds things up.

Now for the technical stuff. If you really want to know what
is going on a dissassembly listing from 4B08 to 4D44 hex will
come in handy. (Two pages)

To start with a DI command is issued (4B08). This dissables
the interrupts to ensure the DOS is not disturbed by some trivial
thing.

Then the power is turned on to the drive (4B09) via a call to
the power on routine. A slight delay is called for to allow the
motor to get up to speed (4BOC-4B13). Next the disk is checked to
see if awrite protect label is in place (4B14-4B19). If so the
DOS jumps back to BASIC with the appropriate message.

Next track 0 sector O0 is loaded into the track / sector
vectors. The head is then moved out 40 tracks. This achieves two
purposes. To make a lot of noise and to ensure the head is over
track 0. A small delay is called once more and the action begins.

There are now seven fairly similar looking routines. They
are; 4B94-4BBA, 4BBB-4BE1, 4BE2-4C08, 4C09-4C2F, 4C30-4C56,
4C57-4C7D and 4C7E-4CA4. These routines are responsible each for
a different value. Each sector consists of five parts. It starts
with a gap, then an identification mark, another gap, the actual
data field, and finally a checksum. The five numbers needed in a
sector are; 0, 80H, FEH, E7H, 18H, C3H and a checksum. The actual
procedure of laying down the sectors is a series of loops. The

J

GAMES COLUMN

Paul has'nt been able to make it this issue again.

Bear with Paul for now. He has some important exams coming up, and
no doubt will be on tap for next issue.[Ed].

I have a correction to make. Last month I credited Mathew McLean

with Peter Watson's score of 1918 for Super Snake. I have corrected

it this issue.

“4 ‘471 an 4

The HIGH SCORES
GAME SCORE LEVEL HOLDER

DAWN PATROL 65500 Martin Wedgwood
CRASH 581 Peter Watson

DIG OUT 52500 Kenley McLean
HAMBURGER SAM 46400 Peter Watson

LADDER CHALLENGE 23970 Peter Watson

KAMIKAZE 113410 Peter Watson

TEN PIN BOWLS 206 Bernice O'Mahoney
VZ INVADERS 30160 Peter Watson

GALAXON 328,460 Mathew McLean

PENGUIN 2320 Peter Watson
LUNAR LANDER , 17400 Peter Watson

SUPER SNAKE 1918 Peter Watson

MAZE OF ARGON ¡ 78306 Peter Watson
ASTEROIDS 110000 Peter McLean

CIRCUS | 2690 Kenley McLean
PANIK 11090 Martin Wedgwood
HOPPY 299590 Matthew McLean

GHOST HUNTER 23400 Chris McLean

STAR BLASTER 480 units left Matthew McLean

KNIGHTS € DRAGONS : 5300 Easy Peter Watson

KNIGHTS & DRAGONS 1200 Expert Peter Watson
SPACE RAM 805 Peter Watson
MISSILE ATTACK ` 21460 Peter Watson
BUST OUT 1970 Peter Watson

471 Peter Watson PLANET PATROL

OTHER “Y USER SRDUPFS

- DISKMAG

a ai P.O.Box 600. 2
Ua COR Taree NSW. 2430.

JESMOND NSW. 2299.

BRISBANE VZUG

63 Tingalpa

WYNNUM West.

CENT.VIC.COMP.Club

24 Breen St.

BENDIGO VIC

St.
=550 a” ld.

Graeme Bywater

F.0D.Box 88

MORLEY W.A. 6062

10

ADVENTURE GAME WRITING - IMPROVING THE VOCABULARY OF THE GAME

Many commercial adventurea on larger computera have vocabulariea
of several hundred worda and enable the player to enter commanda using
Engliah-type sentencea. Some also allowed the player to enter compound
commanda - commanda where more than one action can be carried out -
auch aa GET THE WOODEN STAKE, KILL THE VAMPIRE, THEN ENTER.

There are quite a few problema with the laat of theae, but it is
posaible to make the computer understand aentencea of a sort. The
improved vocabulary ia due to more plot, and therefore more words to
carry out extra actions, extra worda used to hold the sentences
together, auch aa "IN" ‘or "THE", and extra worda that mean the same
thing, auch as "LOOK" and "EXAMINE". Extra worda make it more likely
that the player will choose the right word firat time, but may take up
a little extra menory. |

Some playera prefer to be able to communicate in sentences because
it makea them feel more a part of the game aa they are "talking" to
the computer. However for othera, the leas typing, the better, ao for
them the old verb-noun parser ia preferable.

In MERKFRUIT LODGE some aort of compromise ia achieved. It allows
playera to enter aentencea if they really feel like it, but also
allowa the two word paraer to be used.

The paraer asaumea the firat word of the command ia a verb, ao
thia haa been placed in VS. The reat of the command ia left in TS.
(Note that aa theae linea are from MERKFRUIT, they will not fit into
the line numbers of the demo program.)

339 IFLEFTS(TS,3)="AT “THENTS=MIDS(TS,4)
354 IFLEFTS(TS,3)="IN “THENTS=MIDS(TS, 4)
356 IFLEFTS(TS,4)="THE “THENTS=MIDS(TS,5)

These three linea remove the AT or the IN from commanda auch aa LOOK
AT THE ROCK or LOOK IN THE CUPBOARD. Next the word "THE" is removed
from these commanda and alao commanda auch aa GET THE AXE. Of corae,
if there are no ATs, INa or THES, nothing is removed. Line 357 removes
a full atop from the end of the command if there ia one there.
337 IFRIGHTS(TS,1)="."THEN TS=LEFTS(TS, LEN(TS)-1)
The following lines find out the last word of the command. This is for
dealing with situations where the following happens:
Player: GIVE AXE

Computer: GIVE THE AXE TO WHOM?
Player: FRED

The player could inatead type GIVE THE AXE TO FRED all in one command
(or just GIVE AXE FRED if (s)he felt like it).
358 FORI=1TOLEN(TS) :IFLEFTS¢ RIGHTS(TS,1I),1)=" "THENK=I!:I=LEN(TS)
359 NEXT: IFK>@THENLS=RIGHTS (T3,K-1):K=0 7

Now the laat word ia left in L3, and the computer will ignore
everything but the firat remaining word in TS, which it assumes to be
the noun. If there ia only one word in TS, LS ia left blank.

The contenta of L% can then be used from within a verb routine. If
the player haa not typed the second noun the routine ahould atill aak
GIVE THE (thing) TO WHOM? aa before. i

1640 IFLAS<>""THENTS=L3:G0TO1647
1645 PRINT "GIVE THE ":TS;: INPUT" TO WHOM"; TS

11

1647 U=1:GOSUB XXX:U=9

Replace XXX with the line number of the line where the noun number la

determined. The noun number of thia second object will be placed in B.

Start of noun aorting routine

FORI=1TO NO: IFMIDS(Y8,1#*3-2,3) =LEFTS(TS,3) THENB=I:I=NO

NEXT: IFU=1THENRETURN

Thia ia the equivalent of linea 320-339 of the demo program. Note the

use of the "IFU=iTHENRETURN" which doea not actually appear in the

program.

The major problem with uaing compound commanda ia knowing when the

entire input muat be rejected. Obvioualy if for aome reason the player

can’t GET THE WOODEN STAKE, it is unfair to expect him to KILL THE

VAMPIRE with hia bare handa. However you might like to design a

routine ao that a player can go N,N,E,E,5,W all in one move, or GET

THE THICKSHAKE AND THE HAMBURGER. Already some VZ adventures feature

the command GET ALL, which enablea the player to pick up every

viaible, gettable object in the room at once.

GRAPHICS

Very few adventures for the VZ contain any graphics at all.

ADVENTURE ISLAND is the only one I have come across that is graphics

based, although several of the VZ Down Under adventures, contained

title acreena designed using GRAFSTAR, a utility which was formerly

available from VZ Down Under, but I am unsure about ita current

availability.

Because each hi-res acreen takea up 2K of memory, it ia not

feasible to atore whole screena unleaa you atore them on disk and load

each one into memory as needed, or load them uaing 16K blocks into the

64K RAM expansion pack.

To achieve the firat method, you will need to write a program to

draw your hi-rea acreen and at the end of it place a

BSAVE"filename",7000,77FF command. To reatore your screen when needed

BLOAD your file using the appropriate filename. Of course you will

need to change the acreen to MODE(1) before doing thia and use a

different filename for each acreen. See the article in VZDU#6 for more

detaila. For the second method, design each acreen and load it into a

memory block using Bob Kitch’sa acreen = mode mover (VZDU#i19- also

appeared in LE’VZ). Once each 16K block ia full save it to diak using:

a aimilar command to that above (Note the HEX numbers) or to tape by

changing the start and end of baaic pointera (see VZDU#7 or #28). To

load the acreena in your program, load them into memory and then use

the screen mode mover to put them on the acreen. You will need to

change the line numbera of this routine because they will probably

clash with those of your adventure. Also note the use of the CLEAR

command in line 3050. In thia form it will not work as a subroutine,

because amongst other things, the CLEAR command tends to clobber

Baaic’a atack, with the result that the computer forgets where it has

to RETURN to at the end of the subroutine. To fix thia, replace line

3050 with a RETURN command, and when you wiah to call the subroutine

use GOSUB3000:CLEAR300 : GOSUB3068

Thia method takea up more effort and memory, but ia the only

alternative for 64K expansion ownera who don’t own disks, and saves

diak and drive wear and tear for those who do. I haven’t gone into

12

disk and—drtve—wear—and-tear-for—those-whe-der—L-heven*t-gene into
full detail because I do not own either a disk drive or a 64K
expanalon so am not aure whether I have outlined each method correctly. Thia diacussion ia more aimed at giving people ideaa on
what they could do.

Another poasible method ia to draw the aame general room ahape for every room, adding doora where required. From thia it would be a
matter of adding picturea of gettable objecta and some fixed objects in the rooma where they appear (eg. bed, table, Window, rope, shovel, ticking parcel, ete.). Hardly 256 colour VGA atandard graphica but it ia a atart. You may like to use mixed text/hi-rea graphics using the routine in the April/May edition of VZ USER. Thia routine enabled four linea of text and 127 by 48 pixel graphics, and ia similar to one used by Larry Taylor to create Eacape River. Because of the length of the routine I cannot reproduce it here, and because VZ USER ia no longer produced, I don’t know where you can obtain a copy if you haven’t got
one. If you do have a copy, remember that the Y part of the graphica rangea from 4 to 51 (not @ to 47 aa you might expect), that you cannot use INPUT atatementa - to get the player’a command you must use the
INKEYS atatement, and to save your effort regularly - if you make an error or presa BREAK while the program ia in aplit acreen mode, you
will lose control of the ayatem and have to reaet the computer. If you
uae thia feature you will alao have to keep your deacriptionsa down to
a minimum ao everthing fita into four linea. The program below ia an example of how you could draw a room. Y values are kept in the range
of 4 to 5i in case you decide to uae the aplit Screen; if you don’t
use it you can change the program to make the room a bit bigger. The
program makea up a random movement code which la then used to draw
doora in these positions. In the program the far wall ia said to be north. Linea 240 and 250 draw a barred window in the north wall.

309 FORI=1T04:DS=DS+MIDS¢(STRS¢ RND(2)-1),2,1):NEXT
98 COLOR1+RND(3)
39 MODE(1) |
199 FORX=9T097:SET(X,51):NEXT
110 FORY=19T051:SET(0, Y): SET(97,Y) ¿NEXT
1209 FORX=30T097:SET(X,36) :NEXT
125 FORY=4T036:SET(127,Y): SET(30,y): NEXT
130 FORI=1T030:SET(30-1,36+(1/2))>: SET (127-1,36+(1/2))
149 SET(30-1,4+(1/2)):SET (127-TI,4+(1/2)>:NEXT
150 FORX=39T0127:SET(X,4): NEXT
155 IFLEFTS(DS,1)="1"THEN17S
160 FORY=19T036:SET(68,Y):SET (88,Y) : NEXT
170 FORX=68T088:SET(x,19):NEXT
175 IFMID2(DS,3,1)="1"THEN19S
130 FORI=19T020:SET (30-1,19+(1/2)): NEXT
130 FORY=24T041:SET(20,Y):SET (10, Y+5) ¿NEXT
135 IFRIGHTS(D2,1>)="1"THEN215
009 FORI=19T020:SET- (127-1,19+(1/2)): NEXT
210 FORY=24T041:SET(117,Y)>:SET (107, ,Y+5):NEXT
213 IFMIDS(D3,2,1)="1"THEN240
220 FORX=38T058:S5ET(X,49): RESET(X,51):NEXT
230 FORY=49T051:SET(38,Y):SET (58,Y) : NEXT
2409 FORX=49T0S6:SET(X,39):SET (X,19) :NEXT:FORX=40TOS6STEPA
30 FORY=9T019:SET(X,Y)>:NEXT:NEXT
1909 GOTO1000

13

HIDDEN EXITS

These are found in many adventurea. The player may knock down a

falae wall, cut through a denae hedge or clump of ivy, or look in an

old barrel against one wall to find a secret room or passageway. In

thia case you will need to alter movement codes mid-adventure. (Equally

you may need to alter it if a path which could originally be travelled
auddenly becomes blocked.) Because we have decided to atore movement

codea in data atatementa only, thia ia not the eaaijieat piece of
programming. In some caaea you may be able to just set up your codes

ao the player finda when an exit ia made weat that ia not posaible to

yo eaat again. However for othera the program muat physically alter

itaelf. |
Include the Find Line Number routine that we used temporarily laat

iasue at the atart of the program along with the other machine code
routinea.

ey
18 FORI=312390T031304:READA: POKEI,A: NEXT
22 DATA237,91,33,121,205,44,27, 210,217,30,237,67,33,121,201

Where you need to uae thia feature, your firat line should be

POKE30862,58:POKE30863,122

Firatly if the change in movement code ia for the room the player is

in, you muat change the contenta of DS to the new movement code.

Next find the next line number OF A LINE THAT EXISTS after the

data atatement that containa your movement code. For example, if your

movement code waa in line 5202, and the line after that was 5210, you

would follow in your routine with X=USR(5210)

Depending on which exit you wish to change, you must subtract a

certain value from X. For eaat subtract three; for weat, four; for

aouth, five; and for north subtract aix.

If you wiah to create a new exit, POKE X,48. If you wish to block

off an exiating exit, POKE X,439
For example, if you wiah to change the movement code for line 5202

- asasume DS="1110" to create a new exit to the north, you would do the

following:

Des="alio"

PORE30862,538:P0KE30863,122

X=U5R(5210)-6

POKEX, 48

Don*t forget to reatore the USR pointer to the aound routine by adding
POKE30862,82:POKE30863,121

You might wiah to record the change in a flag because if you save
your game progreaa, turn the computer off and reload the game and your

progresa later on, you will find your new exit will have magically

disappearedt After the progreaa haa been reloaded, the program could

check any changea that need to be made, and make them again.

Finally if you teat drive your program, don’t forget to change the

line back to ita original movement code before you save the program.

It would also be a good idea to include a little routine to change

everything back if the player QUITa or diea.

RANDOM MOVING ITEMS

Theae are objecta that have the power to move around on their own.

I4

They may be some kind of animal, or a small object that can be blown
around in the breeze. They add a little intereat to the game because
the player never knowa where they are going to meet.

In the demo program there ia a dog that movea around between three
different rooma. Thia ia the code that allowa it to do ao:

480 IFFC(3@) =10RF (22) =26THENS90

I£ the dog haa decided to follow you, or run away, this section is
ignored and akipped.

485 U=RNDC(3) :IFF(22)=SANDU=1THEN F(22)=4:GOTOS590

490 IFF C22) =S9ANDU=3THENF(22)=4: GOTOSeea

495 IFF C22) =4ANDU=3THENF(22)=5: GOTOS@e

497 IFF C22) =4ANDU=1THENF(22)=9

P(22) ia a flag which containa the location of the dog. It may be that
the player can pick up a random moving item (eg a piece of paper
blowing around in the breeze). In thia case you would use an element
of the C array to atore the item’a location.

In moat cases the code ia aimpler than thia, if you decide to have
your item move along one particular row or column of your map. In thia
case it ia just a matter of calculating the new position. We will
asaume the item ia C(18) and ia in an 8X8 map and can move north and
South between rooma 16 and 56

LFPCC€18) =RORC (18) =G@0RC(18)=65 THENRETURN
U=RND(3)-2:IF(C(18)=16ANDU=-1) OR(C(18) =S6ANDU=1) THENU=-U
C¢C18)=C618)+¢U2#8)
RETURN 7

Obviously if you want your object to move east/west, you should not
multiply U by 8. Your object should not be able to walk through walls.
Experienced programmera might like to make up a routine to enable the
item to move anywhere it likea, provided it looks at the movement
codea to see if the move ia legal.

This virtually concludea the series. There are one or two more
articlea to come on tokeniaed room deacriptiona and the use of program
modules and these will appear later on. Following ia a brief summary
of the atepa involved in writing your own adventure, in the order you
might wish to carry them out. The iaaue of VZDU to refer to ia alao
noted.

Think of something to write about! (#27)

Think of a character, a plot and some puzzlea (#27)

Make a liat of nouna and verba for the computer to underatand (427)

Draw a map, and compile your movement codea (#27)

Make up some room deacriptions (#27)

Type in the machine code, initialisation and data atatementa (#29)

Type in the screen diaplay and command paraer (430)
Design your verb aubroutinea, type them in and Inatall the ON GOSUB
linea (#31)

Add aounda (#29) and other extraa

Progresa tape save routinea (#28) DO LAST!

Good luck writing your adventure program. I hope to see a few efforts
published in V2DU magazine or the public domain tape soon!

15

N

om,

STOP PRESS STOP PRESS STOP PRESS ©

They said it would*nt happen, but it has! THE GAMES COLUMN IS BACK!

Actually this month it is really Peter Watson's cOlumn. Since he has been the only contributer of late, the above is justifiable. Still as I’ve said before, if just one person contributes every coupl of months, that is more than enough reason to write this column. (Thanks Peter. (Ed.)) Well with that out of the way let me hand the column over to Feter”s hints and comments.

Note there are no adventure game reviews this month as I have run out of adventures to review. If anyone has built a masterpiece thanks to David Wood's tutorials, I would be more than happy to review it.

CRASH. Use the speed button as little as Possible, as you run out of fuel much more quickly,

ASTEROIDS. Ignore a "chunk" of asteroid and wait for the UFO to appear. It is worth 1000 points. Once you have destroyed it, wait for another UFO etc. (Patience required here).

LUNAR LANDING. Ignore the 100 and 300 point landing pads. The 500 point pads are as easy to land on. (I can crash anywhere. (Ed.))

As well as the abovehints, Feter has provided us with thefollowing mini reviews of a couple of arcade/action games. Thankyou Peter.

KAMIKAZE. I suppose a few club members will skin me for saying this....but a game of Kamikaze lasts too long. After the first few Frames, the level of difficulty remains the same. My high score of 113410 took ihr i7min., after which I had eye strain!!! (Its an endurance test Peter, not a game of skill Ed.)). I think the game would be better, if say the bombs were faster or there were more of them per frame. I also note that as the Kamikazes built up on the screen, (there can be up to 30 of them), the action slows up noticeably. © Could make the test the time to reach 10,000 or so. Ed.

Asteroids. The game would be less drawn out if there were no extra lives given every 10000. Also it is very easy, when playing with Joysticks, to accidentially hit Hyperspace and reappearin a very dangerous spot. Thanks again to Peter for his contribution to this column, especially since this column writer bacame bogged down with school exams. Once again if you have a review, hints orquestions or high scores etc., please send them into my address below. SEND THEM IN NOW AND KEEP V.Z GAMING THRIVING.

See you next editio

Paul Frantz. 25 Crocker St. KIRWAN. Gld. 4817.

16

